3.99 \(\int \frac {\tan (c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=119 \[ -\frac {(A-i B) \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {A+i B}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {A+3 i B}{2 a d \sqrt {a+i a \tan (c+d x)}} \]

[Out]

-1/4*(A-I*B)*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))/a^(3/2)/d*2^(1/2)+1/2*(A+3*I*B)/a/d/(a+I*a*
tan(d*x+c))^(1/2)+1/3*(-A-I*B)/d/(a+I*a*tan(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {3590, 3526, 3480, 206} \[ -\frac {(A-i B) \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {A+i B}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {A+3 i B}{2 a d \sqrt {a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(Tan[c + d*x]*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

-((A - I*B)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])])/(2*Sqrt[2]*a^(3/2)*d) - (A + I*B)/(3*d*(a +
 I*a*Tan[c + d*x])^(3/2)) + (A + (3*I)*B)/(2*a*d*Sqrt[a + I*a*Tan[c + d*x]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3480

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rule 3526

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^m)/(2*a*f*m), x] + Dist[(b*c + a*d)/(2*a*b), Int[(a + b*Tan[e + f*x])^(m + 1),
 x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0]

Rule 3590

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)]), x_Symbol] :> -Simp[((A*b - a*B)*(a*c + b*d)*(a + b*Tan[e + f*x])^m)/(2*a^2*f*m), x] + Dist[
1/(2*a*b), Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[A*b*c + a*B*c + a*A*d + b*B*d + 2*a*B*d*Tan[e + f*x], x], x],
 x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && EqQ[a^2 + b^2, 0]

Rubi steps

\begin {align*} \int \frac {\tan (c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx &=-\frac {A+i B}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \int \frac {a (A+i B)+2 a B \tan (c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx}{2 a^2}\\ &=-\frac {A+i B}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {A+3 i B}{2 a d \sqrt {a+i a \tan (c+d x)}}-\frac {(i A+B) \int \sqrt {a+i a \tan (c+d x)} \, dx}{4 a^2}\\ &=-\frac {A+i B}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {A+3 i B}{2 a d \sqrt {a+i a \tan (c+d x)}}-\frac {(A-i B) \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\sqrt {a+i a \tan (c+d x)}\right )}{2 a d}\\ &=-\frac {(A-i B) \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {A+i B}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {A+3 i B}{2 a d \sqrt {a+i a \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.66, size = 145, normalized size = 1.22 \[ \frac {\sqrt {1+e^{2 i (c+d x)}} \left (B \left (-1+8 e^{2 i (c+d x)}\right )-i A \left (-1+2 e^{2 i (c+d x)}\right )\right )+3 (B+i A) e^{3 i (c+d x)} \sinh ^{-1}\left (e^{i (c+d x)}\right )}{3 a d \left (1+e^{2 i (c+d x)}\right )^{3/2} (\tan (c+d x)-i) \sqrt {a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Tan[c + d*x]*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

(Sqrt[1 + E^((2*I)*(c + d*x))]*((-I)*A*(-1 + 2*E^((2*I)*(c + d*x))) + B*(-1 + 8*E^((2*I)*(c + d*x)))) + 3*(I*A
 + B)*E^((3*I)*(c + d*x))*ArcSinh[E^(I*(c + d*x))])/(3*a*d*(1 + E^((2*I)*(c + d*x)))^(3/2)*(-I + Tan[c + d*x])
*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

fricas [B]  time = 0.55, size = 368, normalized size = 3.09 \[ -\frac {{\left (3 \, \sqrt {\frac {1}{2}} a^{2} d \sqrt {\frac {A^{2} - 2 i \, A B - B^{2}}{a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (\frac {{\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (4 i \, a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} + 4 i \, a^{2} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {A^{2} - 2 i \, A B - B^{2}}{a^{3} d^{2}}} + {\left (4 i \, A + 4 \, B\right )} a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) - 3 \, \sqrt {\frac {1}{2}} a^{2} d \sqrt {\frac {A^{2} - 2 i \, A B - B^{2}}{a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (\frac {{\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (-4 i \, a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} - 4 i \, a^{2} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {A^{2} - 2 i \, A B - B^{2}}{a^{3} d^{2}}} + {\left (4 i \, A + 4 \, B\right )} a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) - \sqrt {2} {\left (2 \, {\left (A + 4 i \, B\right )} e^{\left (4 i \, d x + 4 i \, c\right )} + {\left (A + 7 i \, B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} - A - i \, B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-3 i \, d x - 3 i \, c\right )}}{12 \, a^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/12*(3*sqrt(1/2)*a^2*d*sqrt((A^2 - 2*I*A*B - B^2)/(a^3*d^2))*e^(3*I*d*x + 3*I*c)*log((sqrt(2)*sqrt(1/2)*(4*I
*a^2*d*e^(2*I*d*x + 2*I*c) + 4*I*a^2*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((A^2 - 2*I*A*B - B^2)/(a^3*d^2)
) + (4*I*A + 4*B)*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/(I*A + B)) - 3*sqrt(1/2)*a^2*d*sqrt((A^2 - 2*I*A*B - B^2
)/(a^3*d^2))*e^(3*I*d*x + 3*I*c)*log((sqrt(2)*sqrt(1/2)*(-4*I*a^2*d*e^(2*I*d*x + 2*I*c) - 4*I*a^2*d)*sqrt(a/(e
^(2*I*d*x + 2*I*c) + 1))*sqrt((A^2 - 2*I*A*B - B^2)/(a^3*d^2)) + (4*I*A + 4*B)*a*e^(I*d*x + I*c))*e^(-I*d*x -
I*c)/(I*A + B)) - sqrt(2)*(2*(A + 4*I*B)*e^(4*I*d*x + 4*I*c) + (A + 7*I*B)*e^(2*I*d*x + 2*I*c) - A - I*B)*sqrt
(a/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-3*I*d*x - 3*I*c)/(a^2*d)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \tan \left (d x + c\right )}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*tan(d*x + c)/(I*a*tan(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.20, size = 96, normalized size = 0.81 \[ \frac {-\frac {\left (-\frac {i B}{4}+\frac {A}{4}\right ) \sqrt {2}\, \arctanh \left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{\sqrt {a}}-\frac {2 \left (-\frac {3 i B}{4}-\frac {A}{4}\right )}{\sqrt {a +i a \tan \left (d x +c \right )}}-\frac {a \left (i B +A \right )}{3 \left (a +i a \tan \left (d x +c \right )\right )^{\frac {3}{2}}}}{d a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(3/2),x)

[Out]

2/d/a*(-1/2*(-1/4*I*B+1/4*A)*2^(1/2)/a^(1/2)*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))-(-3/4*I*B-1
/4*A)/(a+I*a*tan(d*x+c))^(1/2)-1/6*a*(A+I*B)/(a+I*a*tan(d*x+c))^(3/2))

________________________________________________________________________________________

maxima [A]  time = 0.73, size = 116, normalized size = 0.97 \[ \frac {3 \, \sqrt {2} {\left (A - i \, B\right )} \sqrt {a} \log \left (-\frac {\sqrt {2} \sqrt {a} - \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {2} \sqrt {a} + \sqrt {i \, a \tan \left (d x + c\right ) + a}}\right ) + \frac {4 \, {\left (3 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} {\left (A + 3 i \, B\right )} a - 2 \, {\left (A + i \, B\right )} a^{2}\right )}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}}{24 \, a^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

1/24*(3*sqrt(2)*(A - I*B)*sqrt(a)*log(-(sqrt(2)*sqrt(a) - sqrt(I*a*tan(d*x + c) + a))/(sqrt(2)*sqrt(a) + sqrt(
I*a*tan(d*x + c) + a))) + 4*(3*(I*a*tan(d*x + c) + a)*(A + 3*I*B)*a - 2*(A + I*B)*a^2)/(I*a*tan(d*x + c) + a)^
(3/2))/(a^2*d)

________________________________________________________________________________________

mupad [B]  time = 7.07, size = 163, normalized size = 1.37 \[ -\frac {\frac {B\,1{}\mathrm {i}}{3\,d}-\frac {B\,\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )\,3{}\mathrm {i}}{2\,a\,d}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2}}-\frac {\frac {A}{3}-\frac {A\,\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}{2\,a}}{d\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2}}+\frac {\sqrt {2}\,B\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {-a}}\right )\,1{}\mathrm {i}}{4\,{\left (-a\right )}^{3/2}\,d}-\frac {\sqrt {2}\,A\,\mathrm {atanh}\left (\frac {\sqrt {2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {a}}\right )}{4\,a^{3/2}\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((tan(c + d*x)*(A + B*tan(c + d*x)))/(a + a*tan(c + d*x)*1i)^(3/2),x)

[Out]

(2^(1/2)*B*atan((2^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2))/(2*(-a)^(1/2)))*1i)/(4*(-a)^(3/2)*d) - (A/3 - (A*(a +
a*tan(c + d*x)*1i))/(2*a))/(d*(a + a*tan(c + d*x)*1i)^(3/2)) - ((B*1i)/(3*d) - (B*(a + a*tan(c + d*x)*1i)*3i)/
(2*a*d))/(a + a*tan(c + d*x)*1i)^(3/2) - (2^(1/2)*A*atanh((2^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2))/(2*a^(1/2)))
)/(4*a^(3/2)*d)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \tan {\left (c + d x \right )}}{\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Integral((A + B*tan(c + d*x))*tan(c + d*x)/(I*a*(tan(c + d*x) - I))**(3/2), x)

________________________________________________________________________________________